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INVARIANT DIFFERENTIAL OPERATORS ON THE
MINKOWSKI-EUCLID SPACE

JAE-HYUN YANG

ABSTRACT. For two positive integers m and n, let P, be the open con-
vex cone in R™(n+1)/2 consisting of positive definite n X n real symmetric
matrices and let R(™™) be the set of all m X n real matrices. In this
paper, we investigate differential operators on the non-reductive homo-
geneous space Pp X R(™7) that are invariant under the natural action
of the semidirect product group GL(n,R) x R(™™) on the Minkowski-
Euclid space Pp X R(™") These invariant differential operators play an
important role in the theory of automorphic forms on GL(n,R) x R(m7m)
generalizing that of automorphic forms on GL(n,R).

1. Introduction

Let
Pnz{YeR<”v">| Y = tY>o}

be the open convex cone of positive definite symmetric real matrices of degree
n in the Euclidean space R™"*1/2 where F(%1 denotes the set of all k x [
matrices with entries in a commutative ring F' for two positive integers k and
I and 'M denotes the transpose matrix of a matrix M. Then the general linear
group GL(n,R) acts on P,, transtively by

(1.1) g-Y=gY'g, g€GL(n,R), Y €P,.

Therefore, P,, is a symmetric space which is diffeomorphic to the quotient
space GL(n,R)/O(n), where O(n) denotes the orthogonal group of degree n.
A. Selberg [10] investigated differential operators on P, invariant under the
action (1.1) of GL(n,R) (cf. [7, 8]).

Let
GLpm = GL(n,R) x R™™
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be the semidirect product of GL(n,R) and the abelian additive group R("™")
equipped with the following multiplication law

(ga )‘) : (hau) = (gh, Apt 4 ,u)a

where g, h € GL(n,R) and A, € R™™ . Then we have the natural action of
GL,, , on the non-reductive homogeneous space P, x RO™™) given by

(1.2) (9:N) - (Y,V) = (gY'g, (V+N)'9g),
where g € GL(n,R), A € R™™) Y € P, and V € R(™"™),

For brevity, we set Py ;m = Pn X R(m7) and K = O(n). Since the action
(1.2) of GLy,  is transitive, Py, ,, is diffeomorphic to GL,, /K. We observe
that the action (1.2) of GL,, ., generalizes the action (1.1) of GL(n,R).

The significance in studying the non-reductive homogeneous space Py, ,,, may
be explained as follows. Let

Cpom = GL(n,Z) x Z0™™

be the arithmetic subgroup of GL, ,,, where Z is the ring of integers. The
arithmetic quotient Iy, ;,,\Pp, m may be regarded as the universal family of
principally polarized real tori of dimension mn (cf. [14]). We propose to name
the space Py, m the Minkowski- Euclid space since it was H. Minkowski [9] who
found a fundamental domain for P, with respect to the arithmetic subgroup
GL(n,Z) by means of the reduction theory. In this setting, using the invariant
differential operators on P,, ,,, we can develop a theory of automorphic forms
on P, ,, generalizing that on P,.

The aim of this paper is to study differential operators on P, ,, that are
invariant under the action (1.2) of GL,, ,,. This paper is organized as follows.
In Section 2, we review differential operators on P, invariant under the action
(1.1) of GL(n,R). In Section 3, we investigate differential operators on P,
invariant under the action (1.2) of GL,, . For two positive integers m and n,
let

Spm = {(X, Z)| X =tX eRm™ 7¢ R<mv">}

be the real vector space of dimension @ + mn. From the adjoint action of
the group GL,, 1, we have the natural action of the orthogonal group O(n) on
Sn,m given by

(1.3) k-(X,2)= (kX'k,Z'k), keOn), (X,Z) € Snm.

The action (1.3) of K = O(n) induces canonically the representation o of O(n)
on the polynomial algebra Pol(Sy, ) consisting of complex-valued polynomial
functions on Sy, ,,,. Let Pol(S,, )% denote the subalgebra of Pol(S,, ,,) consist-
ing of all polynomials on Sy, ., invariant under the representation o of O(n),
and D(Py, ) denote the algebra of all differential operators on P,, ,,, invariant
under the action (1.2) of GL,, ,,. We see that there is a canonically defined
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linear bijection of Pol(S,, )% onto D(P,,,) which is not multiplicative. We
will see that D(Py,m,) is not commutative. The most important problem here is
in finding a complete list of explicit generators of Pol(S,, )% and a complete
list of explicit generators of D(P,, ). We propose several natural problems.
We present some explicit invariant differential operators which may be useful.
In Section 4, we deal with the case when n = 1. In Section 5, we deal with the
case when n = 2 and m = 1,2. In Section 6, we deal with the case when n = 3
and m = 1,2. In Section 7, we deal with the case when n =4 and m =1,2. In
the final section, we present some open problems and discuss a notion of au-
tomorphic forms on Py, ,, using GLy, »,-invariant differential operators on the
Minkowski-Euclid space Py, 1.

Acknowledgements. This work was in part done during the stay at the Max-
Planck-Institut fiir Mathematik in Bonn. The author is very grateful for the
hospitality and financial support, and would like to give hearty and deep thanks
to Minoru Itoh for his interest in this work and many fruitful discussions.

Notations. Denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers, respectively. Denote by Z and
Z7 the ring of integers and the set of all positive integers, respectively. The
symbol “:=” means that the expression on the right is the definition of that
on the left. For two positive integers k and I, F(*!) denotes the set of all k x [
matrices with entries in a commutative ring F. For a square matrix A € F*:¥)
of degree k, tr(A) denotes the trace of A. For any M € F®&D [ denotes
the transposed matrix of M. For a positive integer n, I, denotes the identity
matrix of degree n.

2. Review on invariant differential operators on P,

For a variable Y = (y;;) € Py, set

0 1+d;; O
Y = - _— = +J
I (dys;)  and oy ( 2 3yij) ’

where §;; denotes the Kronecker delta symbol.

For a fixed element g € GL(n,R), put
Y,=g-Y=gY'g, YeP,
Then
0
_t-19 1
av. 9 av?
Consider the following differential operators

2\ .
(2.2) Ditr<<Ya—Y>>, 1=1,2,...,n,

(2.1) dY, =¢gdY'g and
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where tr(A) denotes the trace of a square matrix A. By Formula (2.1), we get

9\ 9\
Yigor | = Y — -1
( aY*) ! ( aY) g
for any ¢ € GL(n,R). Hence each D; is invariant under the action (1.1) of
GL(n,R).
Selberg [10] proved the following.

Theorem 2.1. The algebra D(P,,) of all differential operators on P, invariant
under the action (1.1) of GL(n,R) is generated by D1, Da,...,D,. Further-

more, D1,Ds,..., D, are algebraically independent and D(P,,) is isomorphic
to the commutative ring Clxq, xo, ..., x,] with n indeterminates x1, T2, ..., Ty.

Proof. The proof can be found in [4], p. 337, [8], pp. 64-66 and [11], pp. 29-30.
The last statement follows immediately from the work of Harish-Chandra [1, 2]
or [4], p. 294. O

Let g = R(™™ be the Lie algebra of GL(n,R). The adjoint representation
Ad of GL(n,R) is given by

Ad(g) =gXg~', geGL(n,R), X eg.
The Killing form B of g is given by
B(X,)Y)=2ntr(XY)—-2tr(X)tr(Y), X, Y e€g.
Since B(al,,X) = 0 for all « € R and X € g, B is degenerate. So the Lie
algebra g of GL(n,R) is not semi-simple.
The Lie algebra € of K is
t={Xeg|X+'X=0}.
Let p be the subspace of g defined by
p:{X€g|X: tXeR(’“")}.
Then
g=top

is the direct sum of € and p with respect to the Killing form B. Since Ad(k)p C p
for any k € K, K acts on p via the adjoint representation by

(2.3) k-X =Ad(k)X =kX'k, ke K, Xcp.

The action (2.3) induces the action of K on the polynomial algebra Pol(p)
of p and the symmetric algebra S(p). Denote by Pol(p)X (resp., S(p)¥) the
subalgebra of Pol(p) (resp., S(p)) consisting of all K-invariants. The following
inner product (, ) on p defined by

(X,Y)=B(X)Y), X,Yep
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gives an isomorphism as vector spaces
(2.4) p=pt, X fx, Xep,

where p* denotes the dual space of p and fx is the linear functional on p defined
by
Ix¥)=(,X), Yep.

It is known that there is a canonical linear bijection of S(p)¥X onto D(P,).
Identifying p with p* by the above isomorphism (2.4), we get a canonical linear
bijection

(2.5) 0, : Pol(p)® — D(P,)

of Pol(p)X onto D(P,). The map ©,, is described explicitly as follows. Put
N =n(n+1)/2. Let {4 | 1 < a < N} be a basis of p. If P € Pol(p)¥, then

9 N
P<§>f<geXp <§ ta§a> K)] ;
@ a=1 (tQ)ZO

where f € C°(P,,). We refer the reader to [3, 4] for more detail. In general, it
is difficult to express ©,,(P) explicitly for a polynomial P € Pol(p)%.

(26)  (0a(P)f)(9K) =

Let

(2.7) (X)) =tr(X"), i=12,...,n
be the polynomials on p. Here we take coordinates z11, 12, ...,Zny, in p given
by

11'11 %1‘12 e %zln

X _ 5:612 X292 e 51‘2»”

%-Tln %mgn cee Tnn

For any k € K,

(k-q)(X) = (k' Xk) = tr(k7 ' X°k) = i(X), i=1,2,...,n.

Thus ¢; € Pol(p)X for i = 1,2,...,n. By a classical invariant theory (cf.
[5, 12]), we can prove that the algebra Pol(p)¥ is generated by the polyno-
mials ¢1, g2, ..., q, and that g1, ¢a, ..., g, are algebraically independent. Using
Formula (2.6), we can show without difficulty that

outa) (22,

However, 0,(¢;) (i =2,3,...,n) are yet known explicitly.

We propose the following conjecture.
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Conjecture 1. For any n,

a1\’ ,
©,(qi) = tr ((QYa—Y) ) i=1,2,...,n.

Remark. The author has verified that the above conjecture is true for n = 1, 2.
For a positive real number A,
dsp.p=A-tr(Y 'Y Y ~1dY)

is a Riemannian metric on P,, invariant under the action (1.1). The Laplacian
Ap.a of ds?. , is given by

1 o\’
An;A* Ztr ((Ya—y) )

For instance, consider the case when n = 2 and A > 0. If we write for

Y e PQ,
Y1 Y3 9 ai %ai
Y = ( ) and — = "% P,
Ys Y2 oY 3 9ys EI

ds3 o= Atr(Y ' dY Y 'dY)
A
=—05 {yg dyi + yidys + 2 (yiye + v3) dy;
(y1y2 - yg)

then

+ 2v3 dyrdys — 4y2y3 dyrdys — 4y1y3 dy2dy3}

and its Laplacian Ag. 4 on Py is

1 9\’
AQ;A = Z tr ((Ya—y) )

fi 28_2+ 28_2+1( +2)a_2

5 62 82 2
+2 + + —
(y3 0Y10y2 yys 0Y10y3 Y2y 0y20y3 )

+ 3 (?ﬂi -i-yQi +y3i) }
2\" o Y2 dys3
3. Invariant differential operators on P, .,
For a variable (Y, V) € P,,,, with Y € P,, and V € R(™™)_ put
Y = (yi;) with yi5 = yj5, V = (vm),
dY = (dyij), dV = (dvu),



INVARIANT DIFFERENTIAL OPERATORS 281

[AY] = Ni<jdyij, [dV] = Ak, dvk,

i_ 1+6iji i_ 0
oY o 2 8y¢j ’ ov B a’Ukl ,

where 1 <i,j,l <nand 1<k <m.

and

For a fixed element (g, \) € GL,, , write
(Y, Vi) = (9. 0) - (V. V) = (gY g, (V+N) g),
where (Y, V) € Py, . Then we get

(3.1) Y,=9gY'g, Vi=(V+A'g
and
(3.2) 0 _ 110 0 0 1.

v, Y aw? o v av?
Lemma 3.1. For any two positive real numbers A and B, the following metric
ds2 a5 O P defined by

(3.3) ds} oap=Ac(Y 1dYY'dY) + Bo(Y ' H(dV)dV)

is a Riemannian metric on Py, ., which is invariant under the action (1.2) of
GLy,m. The Laplacian Ay ;a5 0f (Pnm, dsp ,.4.5) s given by

1 o \° m 0 1 9 ‘(o
Anmian=70 <<Ya—y> )ﬂ (Ya—y)+§ 2 <<W> ' <W>)

Moreover, A, m.a B s o differential operator of order 2 which is invariant
under the action (1.2) of GLy m.

Proof. The proof can be found in [14]. O
Lemma 3.2. The following volume element dv, (Y, V) on Py m defined by
(3.4) Anm (Y, V) = (det V)™= [dY][dV]

is invariant under the action (1.2) of GLy, m,.

Proof. The proof can be found in [14]. O
Theorem 3.1. Any geodesic through the origin (I,,0) for the Riemannian
metric ds?, ., 1 is of the form

a0 = (Ao 2 ( | - s)ds) 1]).

where k is a fived element of O(n), Z is a fivzed h x g real matriz, t is a real
variable, A1, Ao, ..., A\, are fized real numbers not all zero and

A(t) := diag (eM?, ... e,

Furthermore, the tangent vector v'(0) of the geodesic y(t) at (I,,0) is (D[k], Z),
where D = diag (2A1,...,2\,).
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Proof. The proof can be found in [14]. O

Theorem 3.2. Let (Yy, Vo) and (Y1,V1) be two points in Py m. Let g be an
element in GL(n,R) such that Yo[tg] = I,, and Y1['g] is diagonal. Then the
length s((Yo, Vo), (Y1, V1)) of the geodesic joining (Yo, Vo) and (Y1,V4) for the
G Ly, m-invariant Riemannian metric ds?

nmiALB is given by
(3.5)

1/2 1/2

1 n
S((YOa‘/O)a(S/lavl)) = A Z(lnt])2 + B/ ZAJ ei(lntj)t dt’
o \i=

j=1

where Ay = Y0 0%, (1 < j < n) with (Vi —Vo)'g = (Uk;) and t1,...,t,
denotes the zeros of det(tYy — Y7).

Proof. The proof can be found in [14]. O
The Lie algebra g, of GL,, ,, is given by
0. = {(X.2)| X eRO"™, Z e RO}
equipped with the following Lie bracket
(X1, 21), (X2, Z2)] = ([X1, X2)o, 22" X1 — Z1"'X>),

where [ X7, Xs]o = X1 X2—X5X; denotes the usual matrix bracket and (X7, Z1),
(X2, Z3) € gi. The adjoint representation Ad, of GL,, », is given by

(3.6) Ad, ((9:M)(X, 2) = (9Xg7!, (Z - A'X)"g),

where (g,A\) € GL,, ., and (X, Z) € g.. Also, the adjoint representation ad, of
g+ on End (g4) is given by

ad, (X, 2)) (X1, 21)) = [(X, 2), (X3, Z1)].
We see that the Killing form B, of g, is given by
B*((Xl, Z1), (Xa, Zg)) = (2n+m)tr(X1Xs2) — 2tr(X7) tr(Xa2).

The Lie algebra ¢ of K is

t= {(X,O)eg*] X + thO}.
Let p, be the subspace of g, defined by

Py = {(X, Z)eg | X="'XeR", Ze R(’"’")}.

Then we have the following relations

[e,€] C ¢ and [£,p,] C by
In addition, we have

g, =tdp, (the direct sum).
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K acts on p, via the adjoint representation Ad, of GL,, ,, by
(3.7) k-(X,Z2)=(kX'k,Z'k), k€K, (X,Z)€p..

The action (3.7) induces the action of K on the polynomial algebra Pol(p.)
of p, and the symmetric algebra S(p,). Denote by Pol(p,)¥ (resp., S(ps)¥)
the subalgebra of Pol(p,) (resp., S(p.)) consisting of all K-invariants. The
following inner product (, ). on p, defined by

((Xla Zl)) (XQ) ZQ))* = tr(XlXQ) + tr(Zl tZQ)a (Xla Zl)) (XQ) }/2) € p*
gives an isomorphism as vector spaces
(38) p*gp:, (XaZ)HfX,Za (X,Z)Gp*’

where p; denotes the dual space of p, and fx z is the linear functional on p,
defined by

fX,Z((lezl)) = ((X, Z), (Xl,Zl))*, (Xl,Zl) € Py

Let D(Py,m) be the algebra of all differential operators on P, ., that are in-
variant under the action (1.2) of GL,, ,,. It is known that there is a canonical
linear bijection of S(p,)X onto D(P,,.,). Identifying p, with p* by the above
isomorphism (3.5), we get a canonical linear bijection

(39) Gn,m : POI(P*)K — D(Pn,m)

of Pol(p,)¥ onto D(P,, ). The map O, ,, is described explicitly as follows.
Put N, = n(n+1)/2 4+ mn. Let {n.|1<a<N,} be a basis of p,. If

P € Pol(p,)¥, then
0
P <6t > (geXp <Z twm) )1 ;
(ta)=0

where f € C®(P,, m). We refer the reader to [4], pp. 280-289. In general, it is
very hard to express ©,, ,(P) explicitly for a polynomial P € Pol(p,)*

(3.10) (@n,m(P)f) (9K) =

Take a coordinate (X, Z) in p4 such that

1 1
Z11 5T12 ... 3FT1in
1
512 22 -e- 32n (m,n)
X = ) i i ) ep and Z=(z) e R"™™,
1 1
51‘1»,1 51‘2»” e Lnn

Define the polynomials «;, ﬁ,(,];), R;p and Sj, on p, by

(311) «o;(X,2) = tr(X7), 1<j<n,

(3.12) B (X, Z) (zx*'z),, 0<k<n—1,1<p<q<m,

3.13 X,72) = w(X('ZZ)), 0<j<n-—1,1<p<m,
]:D

(3.14) S;(X,Z) = det(X?('ZZ)?), 0<j<n-1,1<p<m,
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where (Z'Z) (vesp.,(ZX'Z) ) denotes the (p, q)-entry of Z'Z (resp., ZX'Z).

pq pq

For any m x m real matrix S, define the polynomials Mj.s, Qp.s, Qi p.j:s
and ©;, ;.5 on p, by

(B15)  Mus(X,2) = u((X+'252)), 1<j<n
(3.16) Qus(X.2) = 6(('ZS2)), 1<p<n,

(3.17) Qipiis(X,2) = tr(Xi(tZSZ)P(X+ tZSZ)j),
(3.18) Oipis(X,Z) = det (Xi(tZSZ)p(X—i-tZSZ)j),

where 0 < 7,5 <n—1, 1 < p < n. We see that all o, ﬂ,(,];), Rip, Sjp, Mj.s,
Qp:s, Qipj.s and O, ;.5 are elements of Pol(p,)¥.

We propose the following natural problems.
Problem 1. Find a complete list of explicit generators of Pol(p,)%.
Problem 2. Find all relations among a set of generators of Pol(p, ).

Problem 3. Find an easy or an effective way to express explicitly the images
of the above invariant polynomials under the Helgason map O, .

Problem 4. Decompose Pol(p, )X into O(n)-irreducibles.

Problem 5. Find a complete list of explicit generators of the algebra D(Py, )
or construct explicit G L, »,-invariant differential operators on Py, .

Problem 6. Find all relations among a set of generators of D(Py, ).
Problem 7. Is Pol(p,)¥ finitely generated? Is D(P,, ,,) finitely generated?
M. Itoh [6] proved the following theorem.

Theorem 3.3. Pol(p,. )X is generated by a; (1 < j < n) and ﬂé’;) 0<k<
n—1,1<p<qg<m).

Proof. We refer the reader to Theorem 3.1 in [6]. O
M. Ttoh solved Problem 2 in [6], Theorem 3.2.

We present some invariant differential operators on Py, ,,. Define the differ-
ential operators D;, €, and L, on Py, by

J
(3.19) Djtr<<2Yaiy> ) 1<j<n,

(3.20)

* ) o\*. o

Q7 = —(2Y— | Y | =— <k<n—-1,1<p<q¢<

v {av( 8Y) (av)} o Osksnobidspsgsm
pq
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and

o neu({(G) ) ) e

Here, for a matrix A, we denote by A,, the (p,¢)-entry of A.

Also, define the differential operators Sj, by

522 se=e () (7 () %))

where 1 <j<nand1<p<m.

For any real matrix S of degree m, define the differential operators ®;.5, Ly.s
and q)i,p,j;S by

(3.23) @j;str({Y<2a%+t<%)S<%>)}j>, 1<j<n,
(3.24) Lp;sztr<{yt(%)5(%)}p>, 1<p<m

and
(3.25)
P p,5;5(X, Z)

(i) G @) G @)@,

We want to mention a special invariant differential operator on P, ,,. In
[13], the author studied the following differential operator M, m am on Ppom
defined by

0 1t 0 )

where M is a positive definite, symmetric half-integral matrix of degree m.
This differential operator characterizes singular Jacobi forms. For more detail,
we refer the reader to [13]. From (3.1) and (3.2), we can easily see that the
differential operator M,, ,, aq is invariant under the action (1.2) of GL,, .

Question. Calculate the inverse of M, , s under the Helgason map O, .

4. The case when n =1

In this section, we consider the case when n = m = 1 and the case when
n =1 and m > 2 separately.

4.1. The case when n=1and m =1
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In this case,
GLi, =R* xR, K=0(1), Pi1=R"xR,
where R* = {a € R| a # 0} and Rt = {a € R| a > 0}. Clearly, £ = 0 and
P =0gx = {(2,2)]| z,z € R}. Then e = (1,0) and f = (0,1) form the standard
basis for p,. Using this basis, we take a coordinate (z,z) in p,; that is, if
w € py, then we write w = xe + zf. We can show that Pol(p,)¥ is generated
by the following polynomials

afr,z) =2 and B(z,z) = 2°

The generators « and § are algebraically independent. Let (y,v) be a coordinate
in P11 with y > 0 and v € R. Then using Formula (3.10), we can show that

Oraa) = 2 2 and ©1,(8) = g2

o) = 2y — an = y—s.

1,1 Y By 1,1 Y 902

We see that ©11(c) and O11(8) generate the algebra D(P; 1) and are alge-
braically dependent. Indeed, we have the following noncommutation relation

01,1()01,1() — 01,1(8)O1,1(a) = 201,1(B).

Hence the algebra D(Py,1) is not commutative. The unitary dual K of K
consists of two elements. Let

Pol(p,) = Z m,T
TEI?
be the decomposition of Pol(p,) into K-irreducibles. It is easy to see that the

multiplicity m, of 7 is infinite for all 7 € K. So the action of K on Pol(p,) is
not multiplicity-free. In this case, the seven problems proposed in Section 3
are completely solved.

4.2. The case when n =1 and m > 2

Consider the case when n = 1 and m > 2. In this case,
GLim =R*xR™Y K =0(1), Prm=R" xR™D,

where R* = {a € R| a # 0} and RT = {a € R| a > 0}. Clearly, £ = 0 and
pe=gs={(z,2)| z€R, z € R(m*l)}. Let {e1,...,em} be the standard basis
of R™1 Then

o = (170)5 m = (0761)5 e = (0562)5 ceey m = (anm)
form a basis of p,. Using this basis, we take a coordinate (z, 21, 22, ..., 2;m) in
ps; that is, if w € p,, then we write w = ano + Y., 2knk. We can show that
Pol(p, )X is generated by the following polynomials

a(r,z) =z and Bu(r,2) =22, 1<k<1<m,
where z = (21, 22, ..., 2m). We see easily that one has the following relations

B Bu = Biy for1<k<l<m
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and
ﬂkkﬂflﬂpp = ﬂ]glﬂ?p for1<k<li<p<m.

Therefore, the generators a and Sy (1 < k <1 < m) are algebraically depen-
dent.

Let (y,v) be a coordinate in P, with y > 0 and v = *(v1,v2,...,v5) €
R™1D. Then using Formula (3.10), we can show that
O1m(a) =2 0 and Oy (Lri) o 1<k<l<m
m(a) = 2y — an m = , 1<k<I<m.
1, Yy By 1, kl y(’)vkavl

We see that ©1 () and ©1,.,(Br) (1 k <1 < m) generate the algebra
D(P1,1m). Although ©1 ,,,(Br) (1 < k I < m) commute with each other,
©1,m(a) does not commute with any ©1 ,,,(8k). Indeed, we have the noncom-
mutation relation

O1,m()O1,m(Brt) — O1,m(Br1)O1,m() = 201 ;m(Br1).

Hence the algebra D(P; ) is not commutative. It is easily seen that the action
of K on Pol(p,) is not multiplicity-free.

<
<

5. The case when n = 2

In this section, we deal with the case when n = 2, m = 1 and the case when
n=m=2.

5.1. The case when n=2and m =1

In this case,
GLyy = GL(2,R) x R K =0(2) and GLy1/K =Py x RH2 =Py, .
We see easily that
b= {(X.2)| X = X eR®?, ZeRrO?).

(099 (69 ()9

fi= (Oa (LO))a fo= (Oa (Oa 1))

Then { e1, ea, €3, f1, f2 } forms a basis for p,. For variables (X, Z) € p,, write

Put

and

1
X = (1501 2z3> and Z = (21, 22).

5L3 X2

The following polynomials

1
(X, 2)=tr(X) =21 + 22, X,Z)=tr(X?) =22 4+ 22 + §x§,

§X,2)=2'7 = 2% + 23
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and

O(X,2)= ZX'Z = x127 4+ w225 + 13212
generate the algebra Pol(p, ). We can show that the invariants a1, as, & and
@ are algebraically independent. We omit the detail.

Now we compute the GLo ;-invariant differential operators D;, Do, U, A
on Py q corresponding to the K-invariants oy, ag, &, ¢, respectively, under a
canonical linear bijection

@271 : POl(p*)K — D('ngl).
For real variables t = (t1,t2,t3) and s = (s1, $2), we have

exp (tl@l + t2€2 + t3e3 + Slfl + 82f2)
S (R R}

where
1 1
ai(t,s) =1+t + g(tf +12) + i(t? + 20 t3 H tot2) + -,
1 1
as(t,8) = L to + 55 (65 +85) + gr(tt5 + 2685 +43) + -+,
1 1 2 2 2
as(t,s) =t + 5(751 +t2)ts + g(htg +ti+ts+t5)ts -,
1 1
b1(t,s) =851 — 5(81151 + Sgtg) + ? Sl(t% + t%) + 52(t1t3 + t2t3)} —,

1 1
ba(t,s) = s2 — 5(81153 + sota) + 30 { s1(t1 + t2)ts + 32(t§ + t%)} —

For brevity, we write a;, by for a;(t,s), bi(t,s) (i = 1,2,3, k = 1,2), respec-
tively. We now fix an element (g,c) € GLa; and write

g1 912
= and c¢= (c1,c2).
g <921 92> (c1,c2)

Put

3 2
(Y(tv S)v V(tv S)) = ((g; C) - eXp (Z tie; + Z 5kfk> ) ’ (I2a 0)
i=1 k=1

with

_ yl(tvs) Y (t,S) —
Y(t,s) = (yg(t,s) yz(t,S)) and V(t,s) = (v1(t,s), va(t, s)).

By an easy computation, we obtain
y1 = (g1a1 + g12a3)* + (g1a3 + g1202)°,

y2 = (92101 + 9203)2 + (92103 + 9202)27
y3 = (g1a1 + g12a3)(g2101 + g2a3) + (9103 + g12a2)(g2103 + g2a2),



INVARIANT DIFFERENTIAL OPERATORS 289

v1 = (e1 + biar + baas)gr + (c2 + biag + b2a2)g12,
vg = (c1 + brar + beas)go1 + (c2 + brag + baaz)ga.

Using the chain rule, we can easily compute the G' L j-invariant differential
operators Dy = Oy 1(a1), Doy = Oz1(a2), ¥ = 021(¢) and A = O21(p).
They are given by

0 0 0 0
Di=2tr|Y— | = - - i
1 r( aY) <y16y1 +y26y2 +y36y3> )

5 82 82 2
=30 +8( 12 s
' <y3 0y10y2 Yrys 0y10y3 b2y 0y20y3 )

+4 22+262+1( +2)62
U1 Y Yo @y2 5 Yi1y2 + Y3 @y§ s

2 82 82

1%
PE 3 , 3
—9 9 19 9 _9
(y Dy, 0v? + 2y 0y10v10v t s Dy, 0v3 )

) 93 3 ) 93

2 e 2

* (y?’ Oy20v? t2y2ys Oy20v10vy T Dy20v3 >
93 ) 93 3

2) - - -

+ {9193 aygav% + (y1y2 + yg) Dys001002 + Y293 aysavg }
82 2 82

3 — 2yz ———— — .

+ (yl 81}% + s 81}181)2 + Y2 81}% )

Clearly, D1 commutes with D but ¥ does not commute with D1 nor with Ds.
Indeed, we have the following noncommutation relations

[Dy, U] = D1¥ — UDy =20

and

[Dy, U] = Dy¥ — WD,

a Yo\ o
=2(2D; —1)¥ — 8det (V) - det (a_y+ (W) W)
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83

0
det (V) -det [ -2 ) — 4 4
- 8det (¥) - de < ) (y1yz+ 3) Dyz0v10va

aYy
Hence the algebra D(Ps 1) is not commutative.

5.2. The case when n = 2 and m = 2
In this case,
GLoo=GL(2,R) x R®? K =0(2) and GLys/K =P x R*? =Py 5.
We see easily that
P = {(X, Z) | X =tX eRZY, Z¢ R(“)} .

Let Oy be the 2 x 2 zero matrix. Put

(D). () 0). o= (G o)

T el ) )
(o0 D)o )

Then { e1, e, €3, f1, f2, f3, fa } forms a basis for p,. For variables (X, Z) € p,,

write
1
X = (1901 5$3> and Z = (2’“ 2’12> .
5T3 T2 221 222
From Theorem 3.3, the algebra Pol(p,)¥ is generated by the following polyno-
mials
) = tI‘(X) =z + T2,

) =u(X) =0 43+ 103,
Z'Z)11 = 21y + #ia
ZtZ)lg = 211221 + Z12%222,
Z'Z)90 = 23, + 23,

t 2 2
=(ZX Z)ll = T1211 + L2219 +1‘3211212,

N
s

N
|

= X1211221 + T2212222 + 5553(2511222 + z12291),

t 2 2
=(ZX Z)QQ = T1297 + L2299 +1‘3221222.
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Set
1B
Aab := det ﬁ;g) ég) for a, b= 0, 1.
By a direct computation, we can show that the following equation
(5.1) a1 Qgp — A1 — A1g =0
holds.

We take a coordinate (Y, V) in Ps o, that is,
po () ve (0
Ys Y2 V21 V22

O (S5 ) wa (5
I — 1 Y3 d R — v11 V12 .
Y %gﬁ o_ | % Gy (6 0 )

Consider the following differential operators

9 \"\ .
D; = tr((QYa—Y) ), 1=1,2

and
0 o \". o
ol = — 2y — | Vv ( == k=0,1,1<p<qg<2.
pq aV aY aV ’ )+ SP>q=>
pq

Note that D1, Do, ng), e lez) are G'Lj o-invariant. For brevity, we put

0
O = ——, d,j=1,2.

8’()1']' b

It is easily seen that
9 .9
Di=tr(2Y—)]=2 =
' r( 5Y) ;yﬁyi

s 07 0’ 0
Dy =3D1 + 8 S + 25 T
2 1 (313 9y10y2 Y1y3 EE Y2Ys3 D203 >

2 2 2

+ 4 {yfaa—y% + y%ﬁ—yg + %(y1y2+y§)§—y§},
O = 11 0% +120% + 23 011012,
ngz) = y1 011021 + y2 012022 + Y3 (011022 + 012021) ,
O8) = 4103, + y2 03 + 23 921000,

Then by a direct computation, we have the following relations

(5.2) [D1, D3] =0,
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(5.3) 00,00 =0, 1<k<i<2 1<p<q<2,
0 0 0 0
(5'4) [Dla ngl)] = 29501)7 [Dlv Q&Q)] = 2952)’ [Dlv QgQ)] = 29%2)'

Therefore, D(Pa,2) is not commutative.

6. The case when n = 3
6.1. The case whenn =3 and m =1
In this case,
GL31 =GL(3,R) x R K =0(3) and GLz1/K =P3 x RH3) =Py .
We see easily that

b= {(X.2)| X=X eR®Y, 7RI},

Put
1 00 0 0 0 000
E, = (0 0 0], E;=(0 1 0], Es=(0 0 0],
000 0 0 0 0 0 1
0+ 0 00 3 00 0
Ey = (4 0 0], Es=[0 0 0], Es=(0 0 3].
0 0 0 100 0 3 0
Let O3 be the 3 x 3 zero matrix and let O; 3 = (0,0,0) € R, Put

ei=(F;,013), 1<i<6,
fl = (03, (1,0,0)), f2 = (03, (07 1’0))7 f3 = (03, (0’0’ 1))

Then {e;, fj|1<i<6, 1 <j <3} forms a basis for p,. Using this basis, we
write for variables (X, Z) € p,,

X %SC4 %1‘5
Ty Ty 5T and Z = (21, 22, 23).
Is %SCG I3

X =

DO [0 [

From Theorem 3.3, the algebra Pol(p,)¥ is generated by the following poly-
nomials

al(XaZ) =1 +$2+$35

1
as(X,Z) = z%+z§+z§+§(zi+z§+zg),

3
a3(X,Z) = o3 + a3 + a3 + 1 {(z1 4 @2)2] + (21 + 23)22 + (22 + 23)78 }

+ 1 T4T5T6,

Bo(X,Z) = zf +z§ Jrzg,
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2 2 2
B1(X,Z) = x127 + 225 + x3z3 + Taz129 + T52123 + Tez223,

1
Bo(X,Z) = aizi + 2525 + — { (2] +23) 27 + (2] +28)25 + (22 +23)23}

4
1 1
+ (561364 + xoxy + §-T5$6) z122 + (301305 + x3x5 + §-T4$6) 2123

1
+ (ZEQZCG + X326 + 5:641'5) Z9Z3.

We take a coordinate (Y, V') in P31, that is,

Y=1vs v us and V = (v1,vq,vs3).
Ys Ys Y3
Put
9 1o 190
o _ | g iee q 5__(5_5_5_)
P TR T B A N T

20ys 20ys  Oys
Consider the following differential operators

o 7
D; = 2Y — i =1,2
K3 tr(( ay) )) Z b )3

) o\ o
Qkﬁ<2Ya—Y) Y<W>, k=0,1,2.

Note that D1, Do, D3, o, 1 and Qo are G'Lps-invariant. It is easily seen
that

and

0 ° 9
Dy = tr <2Ya—y) =2 Zl Vig
2 82 62
Qo =1 8—1)f+y28—v§+y38—v§
2 2 2
(9’01(9’02 + 2y5 (9’0181)3 * 2y6 81)281)3'

Then we have the following relations

+ 2y4

(6.1) [D;,D;] =0 foralli,j=1,2,3
and
(6.2) [D1, Qo] = 29y.

Therefore, D(P3 1) is not commutative.

6.2. The case when n = 3 and m = 2
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In this case,
GL3o =GL(3,R) x R*¥ K =0(3) and GL3s/K =P3 x RZ3 =Py,
We see easily that
Py = {(X,Z) | X=X eRBY 7R }

Put
100 000 000
E, = (0 0 0], E2=[0 1 0], Ez=[0 0 0],
000 000 00 1
0 2 0 00 3 00 0
Ey = (4 0 0], Es=|0 0 0], E=(0 0 3].
0 00 100 0 20
and
100 010 0 0 1
o= (0 0 o>’ F2<o 0 o>’ F3<o 0 o>’
000 000 000
B = (1 0 o>’ F5<0 1 o>’ F“(o 0 1>'
Let O3 be the 3 x 3 zero matrix and let

(0 0 O (2,3)
0273<0 0 O)ER .

Put
ei = (Ei,O23), f;=(0s,F;) 1<i,j<6.
Then {e;, f;j|1 <4,j <6} forms a basis for p,. Using this basis, we write for
variables (X, Z) € p.,
1 1
X1 5,%4 55
X=|2es x5 g% and Z — (2’11 212 213)_
1 221 R22 223
51‘5 §$6 I3
From Theorem 3.3, the algebra Pol(p,)¥ is generated by the following poly-
nomials

a1 (X, Z) = x1 + 22 + 23,

1
2(X, Z) = 2% + a5 + w3 + 5 (2] + a5 + 25),

3
a3(X,Z) = o3 + a3 + 25 + 1 {(z1 4 z2)2] + (21 + 23)22 + (22 + 23)23 }

3
+ — r4x576,

4
ﬁ)(X,Z) = 2}) + 235 + 213,

0
§2) (X, Z) = z11221 + 212222 + 213223,
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(0) _ .2 2 2

22 (X, 2Z) = 231 + 235 + 233,

(1) X.7) = 2 2 2

11 (X,7) = x12{; + 2275 + T3213 + T4211212 + T5211213 + Te212213,

12 (X, Z) = z1z11221 + T2212222 + T3213%23 + 5 z4(211222 + 212221)

=+ % w5(211223 + 213221) + %1'6(212223 + 213222),
éé) (X,Z) = w125, + Ta25 + 3255 + Ta221292 + T5221 223 + Te292223,
ﬁ) (X, Z) = aiz + @328, + 23215

+ {2 + ) + BT}

+ (1 4+ x2) Taz11212 + (21 + T3) T5211213 + (T2 + T3) T6 212213
1

+ 3 (zaw5212213 + TaZez11213 + T5T6211212),

(2) _ .2 2 2
12 (X, Z) = x1z11221 + T5212222 + T5213%23

1
+ 1 {(5’3421 + :c%) Z11221 + (5’3421 + :cé) Z12222 + (:c% + :c%) 213223}

1 1
+ 5 (ZE1$4 + Toxy + §£E5ZE6) (211222 + z12221)

1
+ <$1$5 + z3x5 + _1'41'6> (211223 + z13221)

1
2 2
1

1
+ 5 (962%’ + z3x6 + §$4I5> (212223 + 213222),

(2) _ 2.2 2.2 2.2
9 (X, Z) = 125 + 23255 + L3293

1
+ 1 {%21 (251 + Z%z) + z} (251 + 253) + z (232 + 233) }

+ (21 + ®2) Xa291202 + (21 + T3) T5201223 + (T2 + T3) Te222223
1
=+ 5 (ZE4ZE5222223 + TaTez21223 + ZE5$6221222)-
Set
(a)  5(b)
Agp = det %;) %g) for a,b=0,1,2.
12 22
By a direct computation, we can show that

(63) (Oé? - O[Q) AOO - 20&1 (A01 + AlO) + 2 (AOQ + All + Ago) =0.
We take a coordinate (Y, V) in Ps o, that is,

Yr Y4 Ys

V21 V22 V23
Ys Ye Y3
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Put
9 10 10
o 20 20 9 9 9
9 — % §_1 2_94 % g_% and (%vn %7112 %7113 )
Y4 2 Ye ’
oYy 19 1 g o) Ova1 Ovaz Ovas

Consider the following differential operators

o \'
D; = 2 — , =1,2
1 tr(( aY))a ? ’ 53
and

d o\ t/o
Ok — ) T [oy=_ ) v [ =— k=012 1<p<qg<2.
P {av( aY) (av)} ’ 0Lz l=psas
pq

Note that Dy, Do, Ds, ngl), ceey Qg) are G'L3 >-invariant. For brevity, we put

0

6vij

0 = i=1,2, j=123.

3

It is easily seen that

9 9
Dy = tr <2Ya—y> =2 Zl Vig
O = 4102 + 42 0% + y3 0% + 244 811012 + 245 011913 + 2y 12013,
O = 41 011021 + 2 01209 + y3 D133 + ya (011022 + Dr12021)
+Ys (311323 =+ 313321) + Yo (312323 =+ 313322),
O8) = y1 03 + Y203 + Y3 025 + 24 921902 + 2 5 0103 + 2 yg o203,

Then we have the following relations

(6.4) [D;,D;] =0 foralli,j=1,2,3,

(6.5) 0. Q0] =0, 1<k<I<2 1<p<q<2

and

6.6)  [Dno]=20{, [D,03] =207, [D,0f)] =20

Therefore, D(P3 2) is not commutative.
7. The case when n = 4
6.1. The case whenn =4 and m =1

In this case,

GLyy = GL(4,R) x R K =0(4) and GLy1/K =Py x RED =P, .
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We see easily that

P = {(X,Z) | X =1tX ER(4’4), ZER(1’4)}_

Put
1 000 0000 0000
0000 0100 0000
Ev =000 o[ "5 ooo o " ®=|oo1 0|
0000 0000 0000
0000 0 2+ 00 00 5 0
0000 1000 00 0 0
— — | 2 —
E4*0000’E5*0000’E6*%000’
0001 00 00 0000
000 3 00 00
0 000 00 %0
— — 2
E7*0000’E8*0%00’
00 0 00 00
00 00 00 0 0
(oo o0 3 oo o0 o0
E9_0000’E10_000§
04 00 00 3 0

Let Oy be the 4 x 4 zero matrix and let Oy 4 = (0,0,0,0) € R4, Put
e; = (E;,014), 1<1i<10,
J1=1(04,(1,0,0,0)), f2=(04,(0,1,0,0)),
f3=104,(0,0,1,0)), f1=(04,(0,0,0,1)).
Then {e;, f;]1<i<10, 1 <j <4} forms a basis for p,. Using this basis, we
write for variables (X, Z) € p.,

1 1
5%5 56

7
X=|F02 2 2% 2 and Z = (21,202, 2).
?% 58 T3 5210
527  5%9 %1'10 Ty
Put
(7.1) A = z2+1x2+—z6+1z2
1 4 5 4 4 7
1 1 1
(7.2) B = $§+1x§+1$8+1$3’
1 1 1
(7.3) cC = acg—l—zx%—l—zxg—i—zxfo,
N B SR DN
(7.4) D = zi+-27+—-x9+ -7,

4 4 4
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(7.5) E = %(:m +x2)z5+i (x6 xs + 7 29),
(7.6) F = %(:m +x3)z6+i (x3 w6 + x5 x8),
(7.7) G = %(501 +r4) 27 + i (z5 79 + 6 T10),
(7.8) H = % (2 + x3) 28 + % (x5 6 + 9 10),
(7.9) I = %(xz +r4) 29 + i (z5 27 + 28 T10),
(7.10) J = % (x3 + x4) 210 + i (z6 T10 + T6 7).

From Theorem 3.3, the algebra Pol(p,)¥ is generated by the following poly-
nomials

a1(X,Z) = x1 + x2 + x3 + 24,

1
ag(X,Z):m%—f—x%—i-xg—i—xi—i—?(x%—i—xé—i—x?—i—x%—i—xg—i—x%o),
a3(X,2) = a8 + a3 + a3 + o

+—z1(x§+:c§+:c$) +%x2(x§+z§+zg)

L | W

3
+ Zzg(xg +x§ +:c§0) + Zz4(z$+x§ +:c§0)

+ 1 (965506508 + X5 T7 Tg + T T7 T10 + T X9 9610)7
(X, Z)=A*+B*+C°+D*+2(B*+ F*+ G* + H* + I’ + J?),
Bo(X,Z) = 21 + 25 + 25 + 23,
Bi(X,Z) = 212} + w225 + 1323 + 1427,

+ T52122 + Te2123 + T72124 + XTg2223 + To922z4 + T102324,
B2(X,Z) = Az} + Bz3 + Cz3 + D=3,

+ 2(E251252 + Fzizs + Gzizg + Hzozs + Tzozg + JZ3Z4);

1

B3(X,Z) = (2A:c1 + Exs + Fxg + Gx7)zf

(2BSC2 + Fxs + Hxg + ng)z§

| =

2
+
1

+ (201‘3—}—F$6+H$8+J$10)Z§

— N

+ 5 (2D2a + Gz + Ing + Jx10)2;

1
+ 5 {2E($1 +$2) + (A+B).T5 + Hxe + Ix7 + Fxsg +G.T9}2122
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+ % {2F(x1 + 23) + Hzs + (A + C)xe + Jr7 + Exs + Grip} 2123
+ % {2G(x1 + z4) + Tx5 + Jue + (A + D)x7 + Exg + Fx10} 2124
+ % {2H (22 + x3) + Fas5 + Exg + (B + C)xs + Jxg + Ix10} 2223
+ % {2I(z2 + x4) + Gxs + Ex7 + Jxg + (B + D)xg + Hx10} 2224

1
+ 3 {2J(x3 + x4) + Gz + For + Izg + Hrg + (C + D)1} 2324.

We take a coordinate (Y, V) in Py 1, that is,

Y Ys Ye yr

Ys Y2 Ys Yo
Y = and V = (v1,v2,v3,04).
Ys Ys Y3z Yio (v1, 02, v3, 04)

Y7 Y9 Yo Y4

Put

9 10 1o 10

) 20ys 2095 29
) lg_l e la_yo l£ b ) b ) b
Z %%ys 1652 266748 1286y9 and — = <— - —)
oY 20ys 2 0ys dys 2 9y10 ov vy’ Ovy’ Ovg’ Ovy

19" 19" 1% il

20y7 20ys 2 9yio0 0ya
Let

9 \¢
D; = tr 2Y — , 1=1,2,3,4

and

Jj ot
ng—v<2Ya ) Y(g—v>, 7=0,1,2,3.

It is easily seen that
10
0 0
1 r ( 3Y) ;:1 Y e

For brevity, we put
0

N 81}1-’

i i=1,2,3,4.

Then we get
Qo =107 +y205 +y303 +ya 07 +2y5 0102
+2ys 0103 + 2y7 0104 + 2yg 0203 + 2 Y9 0204 + 2 Y10 0304.

We observe that D1, Dy, D3, Dy, €, 21,22, 3 are invariant differential op-
erators in ID)(’P4,1). Then we have the following relations

(7.11) [D;,D;] =0 foralli,j=1,2,3,4
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and
(7.12) [D1, Qo] = 29y.

Therefore, D(Py4,1) is not commutative.

6.2. The case when n =4 and m = 2

In this case,
GLys = GL(4,R) x R®Y K =0(4) and Pyo= GLys/K = Py x RZY,
We see easily that

P = {(X,Z) | X =1tX ER(4a4), ZER(2’4)}_

Put
1 000 0000 0000
0000 0100 0000
Ev="do o000 ®5looo o " ®=|oo1 0|
0000 0000 0000
0000 0 2 00 00 1 0
o0 o000 |2 000 ~ 10 0 0 0
E4_0000’E5_0000’E6_§000’
000 1 0 000 0000
000 3 00 00
oo o0 o0 oo % o0
E7_0000’E8_0500’
1000 00 00
0000 000 0
00 0 % 00 0 0
— 2
E9*0000’E1°*000%
0 4 00 00 35 O
Let O4 be the 4 x 4 zero matrix and let
0000
0274<0 0 0 O>ER(2"4).
Put

P
Il
N7 N 7N
)
-
N\
o o
oo OO OO
S— —— ~— |IN
— N
=
Il
7N
)
-
N\
o
_ oo OO O -

OO0 oo oo
O =
N~
N~
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= (on(3 00 ) =00 0 1Y)

Then {e;, f;]1 <i<10, 1 <j <8} forms a basis for p,. Using this basis, we

write for variables (X, Z) € p.,

X1 %$5 lfL'fj %17

X — %905 1132 58 15969 and Z — (211 Z12 213 214) .
?-TES ?Us T3 5210 221 222 223 224
5L7 579 %9610 T4

Set

1

|:|11 = 5 (214,(61 + E.’L‘5 + F(Eﬁ + G.T7),
1

|:|22 = 5 (23$2+E$5+HCE8+I.’L‘9),
1

L33 = 5 (20$3+F.T6+H.T8+J.T10),
1

Uy = 3 (2D x4 + Gz + Lag + J x10),
1

Ui = 3 {2E(x1 + x2) + (A+ B)xs + Hxg + Ix7 + Frs + Gag},
1

|:|13 = 5 {2F(1‘1 + 1'3) + HZL'5 + (A + C)SCG + JZL'7 + E:L'g + GSClo},
1

Oy = 3 {2G(z1 + x4) + [z5 + Jaxg + (A+ D)x7 + Exg + Fx10},
1

Dgg = 5 {2H(SC2 +SC3> + FZL'5 +E1‘6 + (B + C)Z‘g + JSCg +I:L'10},
1

Oy = 3 {21(x2 + 24) + Gxs + Exy + Jag + (B + D)xg + Hx10}
1

‘:l34 = 5 {2J(SC3 +SC4) + GZL'(; + FZL'7 +ISC8 + H.CCg + (C+D>SE10}

From Theorem 3.3, the algebra Pol(p,)¥ is generated by the following 16
polynomials

Oél(X,Z):.Il +SC2+SC3+SC4,

1
ag(X,Z):mf—f—x%—i—x%—l—xi—i—g(m?—i—x%—i—x?—i—x%—i—x%—i—x%o),
a3(X,Z) = a3 + 23 + 23 + 23

3
+ = oy (22 + xf + 22) + = ao(aF + 2F + 23)

3
4 4
3 3
+ Z:I:g(acg + 23+ 23y) + Zm(x?—i—x% +z3)
3
+ 1 (25 26 w8 + 5 T7 To + T6 T7 T10 + T8 To T10),
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(X, Z)=A*+B*+C°+D*+2(B*+ F*+ G* + H* + I’ + J?),
ﬁ)(Xv Z) = 21 + 2is + 215 + 214,

8) (X, Z) = z11201 + 212222 + 213223 + 214224,

é?(X, Z) = 231 + 255 + 255 + 234,

ﬁ) (X, Z) = m127) + w227y + w3273 + Ta2iy + T5211212

+ Tez11213 + T7211214 + 8212213 + X9212214 + T10213%14,

(1) _
12 (X, Z) = z1z11221 + T2212292 + 3213223 + Ta4214224

1
+ 3 x5 (211222 + 212221) + 5 x6 (211223 + 213221)

1 1
+ 3 @7 (211224 + 214221) + 5 xg (#12223 + 213%222)

1
+ 3 xg (212224 + 214222) + 3 210 (213224 + 214223),
(1)

5y (X, Z) = 125, + To25y + X325 + T425, + T5221 292
+ Te221223 + T7221223 + +T8222%223 + T9222224 + T10223224,
ﬁ)(X, Z) = Azf1 + Bzf2 + sz3 + DZ%4 +2F z11212 + 2 F 211213
+ 2G z11214 + 2 H 212213 + 21 212214 + 2 J 213214,
g) (X,Z) = Az11201 + B 212222 + C 213223 + D 214204
+ E (211222 + z12221) + F (211223 + 213%21)
+G (211224 + 214221) + H (212223 + 213222)
+ I (212224 + 214%22) + J (213224 + 214223),
ég)(X, Z)= Az3 + Bz3y + ngg + D22, +2FE 201200 + 2 F 291293
+ 2G 221204 + 2 H 200203 + 21 200204 + 2 J 203224,
ﬁ’) (X,Z) = 011 23, + Ooo 235 + Oz 275 + Oaa 274 + Do 211212
+ U 211213 + U4 211214 + Uas 212213
+ Uoq 212214 + O34 213214,
S) (X, Z) = Oy 211221 + Oaz 212229 + 33 213223 + Oag 214224
+ U2 211200 + Uiz 211223 + U4 211224 + Uag 212223
+ Uoa 212204 + O34 213204,
(X, Z) = Ou1 23 + Oz 22, + Osg 235 + Oaa 23, + Oz 22120
+ U3 221223 + U4 221224 + Ua3 222223

+ oy 222224 + O34 223224.

Here, A, B,C, ..., J are defined as in (7.1)-(7.10).
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Set
woBy
Aab = det ﬁ(a) (b) for a, b= 0, 1, 2, 3.
12 22

By a tedious direct computation, we can show that
(7.13) (oei’ —3aian + 2043) Agg — 3 (a? - 042) (Am + Alo)
+60a1 (Aoz + A1 + Azg) + 6 (Aos + A1z + Asy + Agg) = 0.
Take a coordinate (Y, V) in Py o, that is,
Yy Y¥s Y Y7

y — Ys Y2 Ys Yo and V= (Uu V12 V13 014) -
Ys Ys Y3 Yio V21 V22 V23 V24
Y7 Y9 Yo Y4
Put
o 1o 19 19
g |8 o iy 1g- 5 o o o
z % %y&s 1352 286.7;8 12 %ysa and — _<%U11 %Uu %Um %Um)
aY ? % ? % 1?&13 2 g‘ym GV Ova1 Ovaz Ovag Ovag
20yr 20ye 2 0yio dya
Let
9\
DZ:tI'((QYa—Y)), ’L':1,2,3,4

and

o o \" o

(k) — ) 2 i v _
qu{8V<2Y8Y> Y(@V) , £E=0,1,2,3, 1<p<qg<2.
Pq
Note that D1, Dsy, D3, Dy, ng), e Qgg) are G Ly o-invariant. It is easily seen
that
10
0 0
Di=tr|{2Y— ) =2 i—.
Y < 5Y> ; Y oy;
For brevity, we put
0

0 = i=1,2,1<j<A4.

6vij ’
Then we get
Qﬁ) = y1 071 + y2 0%y + y3 075 + ya 074 + 25 011012 + 2 Y6 011013
+2y7 011014 + 2yg 012013 + 2 Y9 012014 + 2 Y10 013014,
QE%) = y1 011021 + Y2 012022 + Y3 013023 + Y4 014024
+ s (311322 =+ 312321) + Ye (311323 =+ 313321)
+ y7 (311324 =+ 314321) + ys (312323 =+ 313322)
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+ Yo (D12024 + 014022) + Y10 (913024 + 014003),

Qéoz) =y105, + Y205 +y3 a223 + Y4 O34 + 2Ys5 021022 + 2 Y6 021023

+ 2y7 021024 + 2 yg 022023 + 2 yg 022024 + 2 Y10 023024.

Then we have the following relations

(7.14) [D;;D;]=0 foralli,j=1,2,3,4,
(7.15) 00,00 =0, 1<k<i<2 1<p<q<2,
and

0 0 0 0 0 0
(7~16) [Dva§1)] = 2951)7 [Dlanz)] = 29&2), [Dlvﬂgz)] = 29§2)'
Therefore, D(Py,2) is not commutative.
8. Final remarks

In this section, we present some open problems and discuss a notion of
automorphic forms on Py, using GL, »,-invariant differential operators on
the Minkowski-Euclid space Py, -

Recall the invariant polynomials «; (1 < j < n) from (3.11) and ﬂ(k) (0<
k<n-1,1<p<q<m)from (3.12). Also recall the invariant differential

operators D; (1 < j < n) from (3.19) and ng]) (0<k<n—-1,1<p<g<m)
from (3.20).

Theorem 8.1. The following relations hold:

(8.1) [D;,D;] =0 foralll<i,j<n,

(8.2) 00,000, 1<k<i<m, 1<p<g<m,
and

(8.3) [D1,09] =200 forall 1<p<qg<m.

Proof. The relation (8.1) follows from the work of Atle Selberg (cf. [8, 10, 11]).
Take a coordinate (Y, V) in Py m with Y = (y;;) and V = (vi). Put

0 14 513 0 0 0
and —=|(—-—1|,
8Y 2 ayw ov a’l}kl
where 1 <¢,j5,l <n and 1 <k < m. Then we get

Dy =2 Z yz] ‘7

1<i<j<n

o2 o2
(O) _
Zy‘” I D DR (avpaavqb * avpbavqa) '

1<a<b<n

By a direct calculation, we obtain the desired relations (8.2) and (8.3). O
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Conjecture 2.

(8.4) Onm(a;) = D; foralll <j<nmn,

(8.5) @mm(ﬁ%)) = ng]) forall0<k<n-1 1<p<qg<m.
We refer to Conjecture 1 in Section 2.

Conjecture 3. The invariants D; (1 < j < n) and ng]) 0<k<n-1,1<
p < ¢ < m) generate the noncommutative algebra D(Py, ).

Conjecture 4. The above relations (8.1), (8.2) and (8.3) generate all relations
among the set

[0l [1<j<n 0<k<n—11<p<q<m}.

Problem 8. Find a natural way to construct generators of D(Py, ).

Using GLy, m-invariant differential operators on the Minkowski-Euclid space
Pr.m, we introduce a notion of automorphic forms on Py, ., (cf. [11]).

Let
Cpom := GL(n,Z) x Z(m™
be the arithmetic subgroup of GL,, ,,. Let Z,, ., be the center of D(P,, ).

Definition 8.1. A smooth function f : P, ,, — C is said to be an automor-
phic form for I',, ,,, if it satisfies the following conditions:

(A1) f is Ty sp-invariant.

(A2) f is an eigenfunction of any differential operator in the center Z, ,, of
D(Pr.m)-

(A3) f has a growth condition.

We define another notion of automorphic forms as follows.

Definition 8.2. Let Dy be a commutative subalgebra of D(Py, ,,) containing
the Laplacian Ap, m.4,8. A smooth function f : P, ,, — C is said to be
an automorphic form for I', ,,, with respect to Dg if it satisfies the following
conditions:

(A1) f is Ty mp-invariant.

(A2) f is an eigenfunction of any differential operator in Dg.

(A3) f has a growth condition.
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